Understanding the most massive white dwarfs

We have completed a comprehensive study of massive white dwarfs with Gaia EDR3 (2110.00598). We can account for the numbers of white dwarfs between 0.95 and 1.15 solar masses with white dwarf cooling models and the rate of star formation in the Galaxy over the past few billion years. In fact, these massive white dwarfs provide an excellent method to trace star formation. The most massive and rare white dwarfs with masses greater than 1.15 solar masses appear to be form through a combination of mergers and the evolution of single stars with about equal numbers forming through these two avenues over the past few billion years.

References

A Large Fraction of Intermediate Mass Stars Become Magnetic White Dwarfs

About ten to twenty percent of white dwarfs are strongly magnetized, and the origin of the magnetic field is a mystery. We have taken a big step toward solving this mystery with the discovery that more than half of stars with initial masses between five and seven times that of the Sun form magnetic white dwarfs through single-star evolution. This is the first evidence that neither mergers or mass transfer are needed to build the strong fields on white dwarfs. Check out our ApJ paper (10.3847/2041-8213/abb5f7)!

References